کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10326499 | 678118 | 2011 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An Hâ control approach to robust learning of feedforward neural networks
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A novel Hâ robust control approach is proposed in this study to deal with the learning problems of feedforward neural networks (FNNs). The analysis and design of a desired weight update law for the FNN is transformed into a robust controller design problem for a discrete dynamic system in terms of the estimation error. The drawbacks of some existing learning algorithms can therefore be revealed, especially for the case that the output data is fast changing with respect to the input or the output data is corrupted by noise. Based on this approach, the optimal learning parameters can be found by utilizing the linear matrix inequality (LMI) optimization techniques to achieve a predefined Hâ “noise” attenuation level. Several existing BP-type algorithms are shown to be special cases of the new Hâ-learning algorithm. Theoretical analysis and several examples are provided to show the advantages of the new method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 24, Issue 7, September 2011, Pages 759-766
Journal: Neural Networks - Volume 24, Issue 7, September 2011, Pages 759-766
نویسندگان
Xingjian Jing,