کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10327299 | 680965 | 2005 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Hausdorff approximation of convex polygons
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We develop algorithms for the approximation of convex polygons with n vertices by convex polygons with fewer (k) vertices. The approximating polygons either contain or are contained in the approximated ones. The distance function between convex bodies which we use to measure the quality of the approximation is the Hausdorff metric. We consider two types of problems: min-#, where the goal is to minimize the number of vertices of the output polygon, for a given distance É, and min-É, where the goal is to minimize the error, for a given maximum number of vertices. For min-# problems, our algorithms are guaranteed to be within one vertex of the optimal, and run in O(nlogn) and O(n) time, for inner and outer approximations, respectively. For min-É problems, the error achieved is within an arbitrary factor α>1 from the best possible one, and our inner and outer approximation algorithms run in O(f(α,P)â
nlogn) and O(f(α,P)â
n) time, respectively. Where the factor f(α,P) has reciprocal logarithmic growth as α decreases to 1, this factor depends on the shape of the approximated polygon P.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Geometry - Volume 32, Issue 2, October 2005, Pages 139-158
Journal: Computational Geometry - Volume 32, Issue 2, October 2005, Pages 139-158
نویسندگان
Mario A. Lopez, Shlomo Reisner,