کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10327541 | 681237 | 2013 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Likelihood inference in generalized linear mixed measurement error models
ترجمه فارسی عنوان
استدلال احتمال در مدل خطای اندازه گیری خطی تعمیم یافته
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
محاسبات بیزی، خانوادگی نمایشی، مدل های سلسله مراتبی، خطای اندازه گیری، اثرات تصادفی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
چکیده انگلیسی
The generalized linear mixed models (GLMMs) for clustered data are studied when covariates are measured with error. The most conventional measurement error models are based on either linear mixed models (LMMs) or GLMMs. Even without the measurement error, the frequentist analysis of LMM, and particularly of GLMM, is computationally difficult. On the other hand, Bayesian analysis of LMM and GLMM is computationally convenient in both cases without and with the measurement error. Recent introduction of the method of data cloning has made frequentist analysis of mixed models also equally computationally convenient. As an application of data cloning, we conduct a frequentist analysis of GLMM with covariates subject to the measurement error model. The performance of the proposed approach which yields the maximum likelihood estimation is evaluated by two important real data types, Normal and logistic linear mixed measurement error models, and also through simulation studies.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 57, Issue 1, January 2013, Pages 549-557
Journal: Computational Statistics & Data Analysis - Volume 57, Issue 1, January 2013, Pages 549-557
نویسندگان
Mahmoud Torabi,