کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10328176 | 681641 | 2005 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Variable selection in neural network regression models with dependent data: a subsampling approach
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The problem of variable selection in neural network regression models with dependent data is considered. In this framework, a test procedure based on the introduction of a measure for the variable relevance to the model is discussed. The main difficulty in using this procedure is related to the asymptotic distribution of the test statistic which is not one of the familiar tabulated distributions. Moreover, it depends on matrices which are very difficult to estimate because of their complex structure. To overcome these analytical issues and to get a consistent approximation for the sampling distribution of the statistic involved, a subsampling scheme is proposed. The procedure, which takes explicitly into account the dependence structure of the data, will be justified from an asymptotic point of view and evaluated in finite samples by a small Monte Carlo study.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 48, Issue 2, 1 February 2005, Pages 415-429
Journal: Computational Statistics & Data Analysis - Volume 48, Issue 2, 1 February 2005, Pages 415-429
نویسندگان
Michele La Rocca, Cira Perna,