کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10332431 | 687468 | 2014 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Clustering approaches for dealing with multiple DNA microarray datasets
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper centres on clustering approaches that deal with multiple DNA microarray datasets. Four clustering algorithms for deriving a clustering solution from multiple gene expression matrices studying the same biological phenomenon are considered: two unsupervised cluster techniques based on information integration, a hybrid consensus clustering method combining Particle Swarm Optimization and k-means that can be referred to supervised clustering, and a supervised consensus clustering algorithm enhanced by Formal Concept Analysis (FCA), which initially produces a list of different clustering solutions, one per each experiment and then these solutions are transformed by portioning the cluster centres into a single overlapping partition, which is further analyzed by employing FCA. The four algorithms are evaluated on gene expression time series obtained from a study examining the global cell-cycle control of gene expression in fission yeast Schizosaccharomyces pombe.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Science - Volume 5, Issue 3, May 2014, Pages 368-376
Journal: Journal of Computational Science - Volume 5, Issue 3, May 2014, Pages 368-376
نویسندگان
Veselka Boeva,