کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10332431 687468 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Clustering approaches for dealing with multiple DNA microarray datasets
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Clustering approaches for dealing with multiple DNA microarray datasets
چکیده انگلیسی
This paper centres on clustering approaches that deal with multiple DNA microarray datasets. Four clustering algorithms for deriving a clustering solution from multiple gene expression matrices studying the same biological phenomenon are considered: two unsupervised cluster techniques based on information integration, a hybrid consensus clustering method combining Particle Swarm Optimization and k-means that can be referred to supervised clustering, and a supervised consensus clustering algorithm enhanced by Formal Concept Analysis (FCA), which initially produces a list of different clustering solutions, one per each experiment and then these solutions are transformed by portioning the cluster centres into a single overlapping partition, which is further analyzed by employing FCA. The four algorithms are evaluated on gene expression time series obtained from a study examining the global cell-cycle control of gene expression in fission yeast Schizosaccharomyces pombe.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Science - Volume 5, Issue 3, May 2014, Pages 368-376
نویسندگان
,