کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10333917 | 689839 | 2011 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Parameterizing cut sets in a graph by the number of their components
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
For a connected graph G=(V,E), a subset UâV is a disconnected cut if U disconnects G and the subgraph G[U] induced by U is disconnected as well. A cut U is a k-cut if G[U] contains exactly k(â¥1) components. More specifically, a k-cut U is a (k,â)-cut if VâU induces a subgraph with exactly â(â¥2) components. The Disconnected Cut problem is to test whether a graph has a disconnected cut and is known to be NP-complete. The problems k-Cut and (k,â)-Cut are to test whether a graph has a k-cut or (k,â)-cut, respectively. By pinpointing a close relationship to graph contractibility problems we show that (k,â)-Cut is in P for k=1 and any fixed constant ââ¥2, while it is NP-complete for any fixed pair k,ââ¥2. We then prove that k-Cut is in P for k=1 and NP-complete for any fixed kâ¥2. On the other hand, for every fixed integer gâ¥0, we present an FPT algorithm that solves (k,â)-Cut on graphs of Euler genus at most g when parameterized by k+â. By modifying this algorithm we can also show that k-Cut is in FPT for this graph class when parameterized by k. Finally, we show that Disconnected Cut is solvable in polynomial time for minor-closed classes of graphs excluding some apex graph.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 412, Issue 45, 21 October 2011, Pages 6340-6350
Journal: Theoretical Computer Science - Volume 412, Issue 45, 21 October 2011, Pages 6340-6350
نویسندگان
Takehiro Ito, Marcin KamiÅski, Daniël Paulusma, Dimitrios M. Thilikos,