کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
433739 689618 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Longest common extensions in trees
ترجمه فارسی عنوان
طولانی ترین پسوند مشترک درختان
کلمات کلیدی
طولانی ترین پیشوند مشترک؛ درخت پسوند یک درخت. تطبیق الگو در درختان
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی

The longest common extension (LCE) of two indices in a string is the length of the longest identical substrings starting at these two indices. The LCE problem asks to preprocess a string into a compact data structure that supports fast LCE queries.In this paper we generalize the LCE problem to trees and suggest a few applications of LCE in trees to tries and XML databases. Given a labeled and rooted tree T of size n, the goal is to preprocess T into a compact data structure that support the following LCE queries between subpaths and subtrees in T  . Let v1v1, v2v2, w1w1, and w2w2 be nodes of T   such that w1w1 and w2w2 are descendants of v1v1 and v2v2 respectively.
• LCEPP(v1,w1,v2,w2)LCEPP(v1,w1,v2,w2): (path–path LCE) return the longest common prefix of the paths v1↝w1v1↝w1 and v2↝w2v2↝w2.
• LCEPT(v1,w1,v2)LCEPT(v1,w1,v2): (path–tree LCE) return maximal path–path LCE of the path v1↝w1v1↝w1 and any path from v2v2 to a descendant leaf.
• LCETT(v1,v2)LCETT(v1,v2): (tree–tree LCE) return a maximal path–path LCE of any pair of paths from v1v1 and v2v2 to descendant leaves. We present the first non-trivial bounds for supporting these queries. For LCEPPLCEPP queries, we present a linear-space solution with O(log⁎⁡n)O(log⁎⁡n) query time. For LCEPTLCEPT queries, we present a linear-space solution with O((log⁡log⁡n)2)O((log⁡log⁡n)2) query time, and complement this with a lower bound showing that any path–tree LCE structure of size O(npolylog(n))O(npolylog(n)) must necessarily use Ω(log⁡log⁡n)Ω(log⁡log⁡n) time to answer queries. For LCETTLCETT queries, we present a time-space trade-off, that given any parameter τ  , 1≤τ≤n1≤τ≤n, leads to an O(nτ)O(nτ) space and O(n/τ)O(n/τ) query-time solution (all of these bounds hold on a standard unit-cost RAM model with logarithmic word size). This is complemented with a reduction from the set intersection problem implying that a fast linear space solution is not likely to exist.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 638, 25 July 2016, Pages 98–107
نویسندگان
, , , , ,