کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10334204 | 690330 | 2005 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Learning to score final positions in the game of Go
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This article investigates the application of machine-learning techniques for the task of scoring final positions in the game of Go. Neural network classifiers are trained to classify life and death from labelled 9Ã9 game records. The performance is compared to standard classifiers from statistical pattern recognition. A recursive framework for classification is used to improve performance iteratively. Using a maximum of four iterations our cascaded scoring architecture (CSA*) scores 98.9% of the positions correctly. Nearly all incorrectly scored positions are recognised (they can be corrected by a human operator). By providing reliable score information CSA* opens the large source of Go knowledge implicitly available in human game records for automatic extraction. It thus paves the way for a successful application of machine learning in Go.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 349, Issue 2, 14 December 2005, Pages 168-183
Journal: Theoretical Computer Science - Volume 349, Issue 2, 14 December 2005, Pages 168-183
نویسندگان
Erik C.D. van der Werf, H. Jaap van den Herik, Jos W.H.M. Uiterwijk,