کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10344525 697832 2015 37 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Machine learning algorithms and forced oscillation measurements to categorise the airway obstruction severity in chronic obstructive pulmonary disease
ترجمه فارسی عنوان
الگوریتم های یادگیری ماشین و اندازه گیری های نوسان مجاز برای دسته بندی شدت انسداد مجاری هوایی در بیماری مزمن انسدادی ریوی
کلمات کلیدی
پشتیبانی تصمیم گیری بالینی، طبقه بندی، هوش مصنوعی، شدت انسداد مجاری ادرار، تکنیک نوسان سازی اجباری، بیماری مزمن انسدادی ریه،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
چکیده انگلیسی
The purpose of this study was to develop automatic classifiers to simplify the clinical use and increase the accuracy of the forced oscillation technique (FOT) in the categorisation of airway obstruction level in patients with chronic obstructive pulmonary disease (COPD). The data consisted of FOT parameters obtained from 168 volunteers (42 healthy and 126 COPD subjects with four different levels of obstruction). The first part of this study showed that FOT parameters do not provide adequate accuracy in identifying COPD subjects in the first levels of obstruction, as well as in discriminating between close levels of obstruction. In the second part of this study, different supervised machine learning (ML) techniques were investigated, including k-nearest neighbour (KNN), random forest (RF) and support vector machines with linear (SVML) and radial basis function kernels (SVMR). These algorithms were applied only in situations where high categorisation accuracy [area under the Receiver Operating Characteristic curve (AUC) ≥ 0.9] was not achieved with the FOT parameter alone. It was observed that KNN and RF classifiers improved categorisation accuracy. Notably, in four of the six cases studied, an AUC ≥ 0.9 was achieved. Even in situations where an AUC ≥ 0.9 was not achieved, there was a significant improvement in categorisation performance (AUC ≥ 0.83). In conclusion, machine learning classifiers can help in the categorisation of COPD airway obstruction. They can assist clinicians in tracking disease progression, evaluating the risk of future disease exacerbations and guiding therapy.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods and Programs in Biomedicine - Volume 118, Issue 2, February 2015, Pages 186-197
نویسندگان
, , , ,