| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 10349443 | 863650 | 2019 | 29 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Optimal spectral approximation of 2n-order differential operators by mixed isogeometric analysis
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													 نرم افزارهای علوم کامپیوتر
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												We approximate the spectra of a class of 2n-order differential operators using isogeometric analysis in mixed formulations. This class includes a wide range of differential operators such as those arising in elliptic, biharmonic, Cahn-Hilliard, Swift-Hohenberg, and phase-field crystal equations. The spectra of the differential operators are approximated by solving differential eigenvalue problems in mixed formulations, which require auxiliary parameters. The mixed isogeometric formulation when applying classical quadrature rules leads to an eigenvalue error convergence of order 2p where p is the order of the underlying B-spline space. We improve this order to be 2p+2 by applying optimally-blended quadrature rules developed in Puzyrev et al. (2017), Caloet al. (0000) and this order is an optimum in the view of dispersion error. We also compare these results with the mixed finite elements and show numerically that the mixed isogeometric analysis leads to significantly better spectral approximations.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 343, 1 January 2019, Pages 297-313
											Journal: Computer Methods in Applied Mechanics and Engineering - Volume 343, 1 January 2019, Pages 297-313
نویسندگان
												Quanling Deng, Vladimir Puzyrev, Victor Calo,