کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10351516 | 864473 | 2013 | 4 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A Lack of statistical pitfalls in the comparison of multivariate causality measures for effective causality
ترجمه فارسی عنوان
فقدان مشکلات آماری در مقایسه مقادیر عاملی چند متغیره برای علیت موثر
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
In a 2011 paper, Wu et al. Comp. Biol. Med. 41 (2011) 1132-1141, compared the performance of several standard causal connectivity measures including Granger Causality (GC) using both simulated data sets and real magnetoencephalography data. Parameters for the causal connectivity measures were obtained using the Dynamic Autoregressive Neuromagnetic Causal Imaging (DANCI) algorithm. In a letter, Dr. Florin and Dr. Pfeifer Comp. Biol. Med. 43 (2013) 131-134, outline four shortcomings of Wu et al. Comp. Biol. Med. 41 (2011) 1132-1141, study. We provide counterarguments for the appropriateness of our approach and demonstrate how, despite any shortcomings, the Wu et al. Comp. Biol. Med. 41 (2011) 1132-1141 study provides an important and valid analysis of these various causal connectivity methods. In particular, none of the findings are consistent with limitation of the dynamic autoregressive neuromagnetic causal imaging (DANCI) algorithm and/or Granger causality (GC) method described by Frye and Wu Comp. Biol. Med. 41 (2011) 1118-1131. In fact, many of the limitations raised by Florin and Dr. Dr. Pfeifer illustrate the significant advantage of the DANCI algorithm and GC method for the analysis of causal connectivity.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 43, Issue 7, 1 August 2013, Pages 962-965
Journal: Computers in Biology and Medicine - Volume 43, Issue 7, 1 August 2013, Pages 962-965
نویسندگان
Richard E. Frye,