کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10360422 869792 2014 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Efficient monte carlo methods for multi-dimensional learning with classifier chains
ترجمه فارسی عنوان
روش های مونت کارلو کارآمد برای یادگیری چند بعدی با زنجیره های طبقه بندی شده
کلمات کلیدی
زنجیره های طبقه بندی طبقه بندی چند بعدی، طبقه بندی چند لایک، روش مونت کارلو، استنتاج بیزی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Multi-dimensional classification (MDC) is the supervised learning problem where an instance is associated with multiple classes, rather than with a single class, as in traditional classification problems. Since these classes are often strongly correlated, modeling the dependencies between them allows MDC methods to improve their performance - at the expense of an increased computational cost. In this paper we focus on the classifier chains (CC) approach for modeling dependencies, one of the most popular and highest-performing methods for multi-label classification (MLC), a particular case of MDC which involves only binary classes (i.e., labels). The original CC algorithm makes a greedy approximation, and is fast but tends to propagate errors along the chain. Here we present novel Monte Carlo schemes, both for finding a good chain sequence and performing efficient inference. Our algorithms remain tractable for high-dimensional data sets and obtain the best predictive performance across several real data sets.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 47, Issue 3, March 2014, Pages 1535-1546
نویسندگان
, , ,