کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10360749 | 869894 | 2015 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Clustering of multivariate binary data with dimension reduction via L1-regularized likelihood maximization
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Clustering methods with dimension reduction have been receiving considerable wide interest in statistics lately and a lot of methods to simultaneously perform clustering and dimension reduction have been proposed. This work presents a novel procedure for simultaneously determining the optimal cluster structure for multivariate binary data and the subspace to represent that cluster structure. The method is based on a finite mixture model of multivariate Bernoulli distributions, and each component is assumed to have a low-dimensional representation of the cluster structure. This method can be considered as an extension of the traditional latent class analysis. Sparsity is introduced to the loading values, which produces the low-dimensional subspace, for enhanced interpretability and more stable extraction of the subspace. An EM-based algorithm is developed to efficiently solve the proposed optimization problem. We demonstrate the effectiveness of the proposed method by applying it to a simulation study and real datasets.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 48, Issue 12, December 2015, Pages 3959-3968
Journal: Pattern Recognition - Volume 48, Issue 12, December 2015, Pages 3959-3968
نویسندگان
Michio Yamamoto, Kenichi Hayashi,