کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10360778 | 869902 | 2005 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Self-supervised learning based on discriminative nonlinear features for image classification
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
For learning-based tasks such as image classification, the feature dimension is usually very high. The learning is afflicted by the curse of dimensionality as the search space grows exponentially with the dimension. Discriminant-EM (DEM) proposed a framework by applying self-supervised learning in a discriminating subspace. This paper extends the linear DEM to a nonlinear kernel algorithm, Kernel DEM (KDEM), and evaluates KDEM extensively on benchmark image databases and synthetic data. Various comparisons with other state-of-the-art learning techniques are investigated for several tasks of image classification. Extensive results show the effectiveness of our approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 38, Issue 6, June 2005, Pages 903-917
Journal: Pattern Recognition - Volume 38, Issue 6, June 2005, Pages 903-917
نویسندگان
Qi Tian, Ying Wu, Jie Yu, Thomas S. Huang,