کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10362187 | 870634 | 2018 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A novel imputation methodology for time series based on pattern sequence forecasting
ترجمه فارسی عنوان
یک روش نوشتن تعریف جدید برای سری زمانی بر اساس پیش بینی توالی الگو
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
سری زمانی، تقلب، پیش بینی، داده کاوی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
The Pattern Sequence Forecasting (PSF) algorithm is a previously described algorithm that identifies patterns in time series data and forecasts values using periodic characteristics of the observations. A new method for univariate time series is introduced that modifies the PSF algorithm to simultaneously forecast and backcast missing values for imputation. The imputePSF method extends PSF by characterizing repeating patterns of existing observations to provide a more precise estimate of missing values compared to more conventional methods, such as replacement with means or last observation carried forward. The imputation accuracy of imputePSF was evaluated by simulating varying amounts of missing observations with three univariate datasets. Comparisons of imputePSF with well-established methods using the same simulations demonstrated an overall reduction in error estimates. The imputePSF algorithm can produce more precise imputations on appropriate datasets, particularly those with periodic and repeating patterns.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 116, 1 December 2018, Pages 88-96
Journal: Pattern Recognition Letters - Volume 116, 1 December 2018, Pages 88-96
نویسندگان
Neeraj Bokde, Marcus W. Beck, Francisco MartÃnez Álvarez, Kishore Kulat,