کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10362237 | 870662 | 2005 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
GCHL: A grid-clustering algorithm for high-dimensional very large spatial data bases
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This new clustering method GCHL (a Grid-Clustering algorithm for High-dimensional very Large spatial databases) combines a novel density-grid based clustering with axis-parallel partitioning strategy to identify areas of high density in the input data space. The algorithm work as well in the feature space of any data set. The method operates on a limited memory buffer and requires at most a single scan through the data. We demonstrate the high quality of the obtained clustering solutions, capability of discovering concave/deeper and convex/higher regions, their robustness to outlier and noise, and GCHL excellent scalability.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 26, Issue 7, 15 May 2005, Pages 999-1010
Journal: Pattern Recognition Letters - Volume 26, Issue 7, 15 May 2005, Pages 999-1010
نویسندگان
A.H. Pilevar, M. Sukumar,