کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10369519 | 875504 | 2005 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
EM-estimation and modeling of heavy-tailed processes with the multivariate normal inverse Gaussian distribution
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The heavy-tailed multivariate normal inverse Gaussian (MNIG) distribution is a recent variance-mean mixture of a multivariate Gaussian with a univariate inverse Gaussian distribution. Due to the complexity of the likelihood function, parameter estimation by direct maximization is exceedingly difficult. To overcome this problem, we propose a fast and accurate multivariate expectation-maximization (EM) algorithm for maximum likelihood estimation of the scalar, vector, and matrix parameters of the MNIG distribution. Important fundamental and attractive properties of the MNIG as a modeling tool for multivariate heavy-tailed processes are discussed. The modeling strength of the MNIG, and the feasibility of the proposed EM parameter estimation algorithm, are demonstrated by fitting the MNIG to real world hydrophone data, to wideband synthetic aperture sonar data, and to multichannel radar sea clutter data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 85, Issue 8, August 2005, Pages 1655-1673
Journal: Signal Processing - Volume 85, Issue 8, August 2005, Pages 1655-1673
نویسندگان
Tor Arne ÃigÃ¥rd, Alfred Hanssen, Roy Edgar Hansen, Fred Godtliebsen,