کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10370132 875795 2005 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Post-dialogue confidence scoring for unsupervised statistical language model training
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Post-dialogue confidence scoring for unsupervised statistical language model training
چکیده انگلیسی
This paper presents a new recognition confidence scoring method for unsupervised training of statistical language models in spoken language dialogue systems. Based on the proposed confidence scoring, the speech recognition results for untranscribed user utterances are selected for training the statistical language models of speech recognizers. The method uses features that can only be obtained after the dialogue session, in addition to other features, such as the acoustic scores of recognition results. Experimental results show that the proposed confidence scoring improves correct/incorrect classification of recognition results and that using the language models obtained through our approach results in better recognition accuracy than that achieved by conventional methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Speech Communication - Volume 45, Issue 4, April 2005, Pages 387-400
نویسندگان
, ,