کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10370541 | 876159 | 2005 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Speech enhancement using super-Gaussian speech models and noncausal a priori SNR estimation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A priori signal-to-noise ratio (SNR) estimation is of major consequence in speech enhancement applications. Recently, we introduced a noncausal recursive estimator for the a priori SNR based on a Gaussian speech model, and showed its advantage compared to using the decision-directed estimator. In particular, noncausal estimation facilitates a distinction between speech onsets and noise irregularities. In this paper, we extend our noncausal estimation approach to Gamma and Laplacian speech models. We show that the performance of noncausal estimation, when applied to the problem of speech enhancement, is better under a Laplacian model than under Gaussian or Gamma models. Furthermore, the choice of the specific speech model has a smaller effect on the enhanced speech signal when using the noncausal a priori SNR estimator than when using the decision-directed method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Speech Communication - Volume 47, Issue 3, November 2005, Pages 336-350
Journal: Speech Communication - Volume 47, Issue 3, November 2005, Pages 336-350
نویسندگان
Israel Cohen,