کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10413027 | 895449 | 2005 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Near optimal solutions to least-squares problems with stochastic uncertainty
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we consider least-squares (LS) problems where the regression data is affected by parametric stochastic uncertainty. In this setting, we study the problem of minimizing the expected value with respect to the uncertainty of the LS residual. For general nonlinear dependence of the data on the uncertain parameters, determining an exact solution to this problem is known to be computationally prohibitive. Here, we follow a probabilistic approach, and determine a probable near optimal solution by minimizing the empirical mean of the residual. Finite sample convergence of the proposed method is assessed using statistical learning methods. In particular, we prove that if one constructs the empirical approximation of the mean using a finite number N of samples, then the minimizer of this empirical approximation is, with high probability, an ε-suboptimal solution for the original problem. Moreover, this approximate solution can be efficiently determined numerically by a standard recursive algorithm. Comparisons with gradient algorithms for stochastic optimization are also discussed in the paper and several numerical examples illustrate the proposed methodology.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Systems & Control Letters - Volume 54, Issue 12, December 2005, Pages 1219-1232
Journal: Systems & Control Letters - Volume 54, Issue 12, December 2005, Pages 1219-1232
نویسندگان
Giuseppe Calafiore, Fabrizio Dabbene,