کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10433207 910280 2011 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the electrophysiological response of bone cells using a Stokesian fluid stimulus probe for delivery of quantifiable localized picoNewton level forces
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی پزشکی
پیش نمایش صفحه اول مقاله
On the electrophysiological response of bone cells using a Stokesian fluid stimulus probe for delivery of quantifiable localized picoNewton level forces
چکیده انگلیسی
A Stokesian fluid stimulus probe (SFSP), capable of delivering quantifiable pN level hydrodynamic forces, is developed to distinguish the electrophysiological response of the cell process and cell body of osteocyte-like MLO-Y4 cells without touching the cell or its substrate. The hydrodynamic disturbance is a short lived (100 ms), constant strength pressure pulse that propagates nearly instantaneously through the medium creating a nearly spherical expanding fluid bolus surrounding a 0.8 μm micropipette tip. Laboratory model experiments show that the growth of the bolus and the pressure field can be closely modeled by quasi-steady Stokes flow through a circular orifice provided the tip Reynolds number, Ret<0.03. By measuring the deflection of the dendritic processes between discrete attachment sites, and applying a detailed ultrastructural model for the central actin filament bundle within the process, one is able to calculate the forces produced by the probe using elastic beam theory. One finds that forces between 1 and 2.3 pN are sufficient to initiate electrical signaling when applied to the cell process, but not the much softer cell body. Even more significantly, cellular excitation by the process only occurs when the probe is directed at discrete focal attachment sites along the cell process. This suggests that electrical signaling is initiated at discrete focal attachments along the cell process and that these sites are likely integrin-mediated complexes associated with stretch-activated ion channels though their molecular structure is unknown.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Biomechanics - Volume 44, Issue 9, 3 June 2011, Pages 1702-1708
نویسندگان
, , , ,