کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10524442 957549 2005 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Censored multiple regression by the method of average derivatives
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
Censored multiple regression by the method of average derivatives
چکیده انگلیسی
This paper proposes a technique [termed censored average derivative estimation (CADE)] for studying estimation of the unknown regression function in nonparametric censored regression models with randomly censored samples. The CADE procedure involves three stages: firstly-transform the censored data into synthetic data or pseudo-responses using the inverse probability censoring weighted (IPCW) technique, secondly estimate the average derivatives of the regression function, and finally approximate the unknown regression function by an estimator of univariate regression using techniques for one-dimensional nonparametric censored regression. The CADE provides an easily implemented methodology for modelling the association between the response and a set of predictor variables when data are randomly censored. It also provides a technique for “dimension reduction” in nonparametric censored regression models. The average derivative estimator is shown to be root-n consistent and asymptotically normal. The estimator of the unknown regression function is a local linear kernel regression estimator and is shown to converge at the optimal one-dimensional nonparametric rate. Monte Carlo experiments show that the proposed estimators work quite well.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 95, Issue 1, July 2005, Pages 182-205
نویسندگان
, ,