کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10524891 | 957763 | 2012 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On probabilistic parametric inference
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper formulates a theory of probabilistic parametric inference and explores the limits of its applicability. Unlike Bayesian statistical models, the system does not comprise prior probability distributions. Objectivity is imposed on the theory: a particular direct probability density should always result in the same posterior probability distribution. For calibrated posterior probability distributions it is possible to construct credible regions with posterior-probability content equal to the coverage of the regions, but the calibration is not generally preserved under marginalization. As an application of the theory, the paper also constructs a filter for linear Gauss-Markov stochastic processes with unspecified initial conditions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 142, Issue 12, December 2012, Pages 3152-3166
Journal: Journal of Statistical Planning and Inference - Volume 142, Issue 12, December 2012, Pages 3152-3166
نویسندگان
Tomaž Podobnik, Tomi Živko,