کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10524981 | 957871 | 2005 | 23 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Nonparametric maximum-likelihood estimation of probability measures: existence and consistency
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper formulates the nonparametric maximum-likelihood estimation of probability measures and generalizes the consistency result on the maximum-likelihood estimator (MLE). We drop the independent assumption on the underlying stochastic process and replace it with the assumption that the stochastic process is stationary and ergodic. The present proof employs Birkhoff's ergodic theorem and the martingale convergence theorem. The main result is applied to the parametric and nonparametric maximum-likelihood estimation of density functions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 133, Issue 2, 1 August 2005, Pages 249-271
Journal: Journal of Statistical Planning and Inference - Volume 133, Issue 2, 1 August 2005, Pages 249-271
نویسندگان
Nobusumi Sagara,