| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 10525127 | 957902 | 2011 | 15 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Linear discrimination for multi-level multivariate data with separable means and jointly equicorrelated covariance structure
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													ریاضیات کاربردی
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												In this article we study a linear discriminant function of multiple m-variate observations at u-sites and over v-time points under the assumption of multivariate normality. We assume that the m-variate observations have a separable mean vector structure and a “jointly equicorrelated covariance” structure. The new discriminant function is very effective in discriminating individuals in a small sample scenario. No closed-form expression exists for the maximum likelihood estimates of the unknown population parameters, and their direct computation is nontrivial. An iterative algorithm is proposed to calculate the maximum likelihood estimates of these unknown parameters. A discriminant function is also developed for unstructured mean vectors. The new discriminant functions are applied to simulated data sets as well as to a real data set. Results illustrating the benefits of the new classification methods over the traditional one are presented.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 141, Issue 5, May 2011, Pages 1910-1924
											Journal: Journal of Statistical Planning and Inference - Volume 141, Issue 5, May 2011, Pages 1910-1924
نویسندگان
												Ricardo Leiva, Anuradha Roy,