کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10525459 957996 2005 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On maximum likelihood estimation in parametric regression with missing covariates
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
On maximum likelihood estimation in parametric regression with missing covariates
چکیده انگلیسی
We consider parametric regression problems with some covariates missing at random. It is shown that the regression parameter remains identifiable under natural conditions. When the always observed covariates are discrete, we propose a semiparametric maximum likelihood method, which does not require parametric specification of the missing data mechanism or the covariate distribution. The global maximum likelihood estimator (MLE), which maximizes the likelihood over the whole parameter set, is shown to exist under simple conditions. For ease of computation, we also consider a restricted MLE which maximizes the likelihood over covariate distributions supported by the observed values. Under regularity conditions, the two MLEs are asymptotically equivalent and strongly consistent for a class of topologies on the parameter set.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 134, Issue 1, 1 September 2005, Pages 206-223
نویسندگان
, ,