کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10525867 | 958369 | 2005 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Cross validation model selection criteria for linear regression based on the Kullback-Leibler discrepancy
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آمار و احتمال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
For many situations, the predictive ability of a candidate model is its most important attribute. In light of our interest in this property, we introduce a new cross validation model selection criterion, the predictive divergence criterion (PDC), together with a description of the target discrepancy upon which it is based. In the linear regression framework, we then develop an adjusted cross validation model selection criterion (PDCa) which serves as the minimum variance unbiased estimator of this target discrepancy. Furthermore, we show that this adjusted criterion is asymptotically a minimum variance unbiased estimator of the Kullback-Leibler discrepancy which serves as the basis for the Akaike information criteria AIC and AICc.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Statistical Methodology - Volume 2, Issue 4, December 2005, Pages 249-266
Journal: Statistical Methodology - Volume 2, Issue 4, December 2005, Pages 249-266
نویسندگان
Simon L. Davies, Andrew A. Neath, Joseph E. Cavanaugh,