کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10527289 958770 2012 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Linear variance bounds for particle approximations of time-homogeneous Feynman-Kac formulae
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Linear variance bounds for particle approximations of time-homogeneous Feynman-Kac formulae
چکیده انگلیسی
This article establishes sufficient conditions for a linear-in-time bound on the non-asymptotic variance for particle approximations of time-homogeneous Feynman-Kac formulae. These formulae appear in a wide variety of applications including option pricing in finance and risk sensitive control in engineering. In direct Monte Carlo approximation of these formulae, the non-asymptotic variance typically increases at an exponential rate in the time parameter. It is shown that a linear bound holds when a non-negative kernel, defined by the logarithmic potential function and Markov kernel which specify the Feynman-Kac model, satisfies a type of multiplicative drift condition and other regularity assumptions. Examples illustrate that these conditions are general and flexible enough to accommodate two rather extreme cases, which can occur in the context of a non-compact state space: (1) when the potential function is bounded above, not bounded below and the Markov kernel is not ergodic; and (2) when the potential function is not bounded above, but the Markov kernel itself satisfies a multiplicative drift condition.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Stochastic Processes and their Applications - Volume 122, Issue 4, April 2012, Pages 1840-1865
نویسندگان
, , ,