کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10527349 958835 2005 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bismut-Elworthy's formula and random walk representation for SDEs with reflection
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Bismut-Elworthy's formula and random walk representation for SDEs with reflection
چکیده انگلیسی
We study the existence of first derivatives with respect to the initial condition of the solution of a finite system of SDEs with reflection. We prove that such derivatives evolve according to a linear differential equation when the process is away from the boundary and that they are projected to the tangent space when the process hits the boundary. This evolution, rather complicated due to the structure of the set at times when the process is at the boundary, admits a simple representation in terms of an auxiliary random walk. A probabilistic representation formula of Bismut-Elworthy's type is given for the gradient of the transition semigroup of the reflected process.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Stochastic Processes and their Applications - Volume 115, Issue 6, June 2005, Pages 907-925
نویسندگان
, ,