کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10527644 | 958938 | 2005 | 37 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Designing a contact process: the piecewise-homogeneous process on a finite set with applications
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We consider how to choose the reproduction rates in a one-dimensional contact process on a finite set to maximize the growth rate of the extinction time with the population size. The constraints are an upper bound on the average reproduction rate, and that the rate profile must be piecewise constant. We show that the optimum growth rate is achieved by a rate profile with at most two rates, and we characterize the solution in terms of a “spatial correlation length” of the supercritical process. We examine the analogous problem for the simpler biased voter model, for which we completely characterize the optimum profile. The contact process proofs make use of a planar-graph duality in the graphical representation, due to Durrett and Schonmann.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Stochastic Processes and their Applications - Volume 115, Issue 1, January 2005, Pages 117-153
Journal: Stochastic Processes and their Applications - Volume 115, Issue 1, January 2005, Pages 117-153
نویسندگان
Aaron B. Wagner, Venkat Anantharam,