کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10532992 | 961812 | 2009 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A fluorescence resonance energy transfer-based binding assay for characterizing kinase inhibitors: Important role for C-terminal biotin tagging of the kinase
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Novel biochemical strategies are needed to identify the next generation of protein kinase inhibitors. One promising new assay format is a competition binding approach that employs time-resolved fluorescence resonance energy transfer (TR-FRET). In this assay, a FRET donor is bound to the kinase via a purification tag, whereas a FRET acceptor is bound via a tracer-labeled inhibitor. Displacement of the tracer by an unlabeled inhibitor eliminates FRET between the fluorophores and provides a readout on binding. Although promising, this technique has so far been limited in applicability in part by a lack of signal strength is some cases and also by an inability to predict whether a particular tagging strategy will show robust FRET. In this work, we sought to better understand the factors that give rise to a strong FRET signal in this assay. We determined the magnitude of FRET for several tyrosine kinases using different purification tags (biotin, glutathione S-transferase [GST], and His) placed at either the N terminus or C terminus of the kinase. It was observed that coupling the FRET acceptor to the kinase C terminus using a biotin/streptavidin interaction resulted in the greatest increase in FRET. Specifically, for multiple kinases, the signal/background ratio was at least 3-fold better using C-terminal biotinylation compared with tagging at the N terminus using a His/anti-His antibody or GST/anti-GST antibody interaction. In one case, the FRET signal using C-terminal biotin tagging was more than 150-fold over background. This strong FRET signal facilitated development of improved inhibitor binding assays that required only tens of picomolar enzyme or tracer-labeled inhibitor. Together, these results indicate that C-terminal biotinylation is a promising tagging strategy for developing an optimal FRET-based competition binding assay for tyrosine kinases.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Analytical Biochemistry - Volume 395, Issue 2, 15 December 2009, Pages 256-262
Journal: Analytical Biochemistry - Volume 395, Issue 2, 15 December 2009, Pages 256-262
نویسندگان
Joyce Kwan, Alden Ling, Eva Papp, David Shaw, J. Michael Bradshaw,