کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10712521 | 1025199 | 2014 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Stationary wavelet transform for under-sampled MRI reconstruction
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک ماده چگال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In addition to coil sensitivity data (parallel imaging), sparsity constraints are often used as an additional lp-penalty for under-sampled MRI reconstruction (compressed sensing). Penalizing the traditional decimated wavelet transform (DWT) coefficients, however, results in visual pseudo-Gibbs artifacts, some of which are attributed to the lack of translation invariance of the wavelet basis. We show that these artifacts can be greatly reduced by penalizing the translation-invariant stationary wavelet transform (SWT) coefficients. This holds with various additional reconstruction constraints, including coil sensitivity profiles and total variation. Additionally, SWT reconstructions result in lower error values and faster convergence compared to DWT. These concepts are illustrated with extensive experiments on in vivo MRI data with particular emphasis on multiple-channel acquisitions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Magnetic Resonance Imaging - Volume 32, Issue 10, December 2014, Pages 1353-1364
Journal: Magnetic Resonance Imaging - Volume 32, Issue 10, December 2014, Pages 1353-1364
نویسندگان
Mohammad H. Kayvanrad, A. Jonathan McLeod, John S.H. Baxter, Charles A. McKenzie, Terry M. Peters,