کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10716024 | 1027430 | 2009 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
PDE-Foam-A probability density estimation method using self-adapting phase-space binning
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
ابزار دقیق
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Probability density estimation (PDE) is a multi-variate discrimination technique based on sampling signal and background densities defined by event samples from data or Monte-Carlo (MC) simulations in a multi-dimensional phase space. In this paper, we present a modification of the PDE method that uses a self-adapting binning method to divide the multi-dimensional phase space in a finite number of hyper-rectangles (cells). The binning algorithm adjusts the size and position of a predefined number of cells inside the multi-dimensional phase space, minimising the variance of the signal and background densities inside the cells. The implementation of the binning algorithm (PDE-Foam) is based on the MC event-generation package Foam. We present performance results for representative examples (toy models) and discuss the dependence of the obtained results on the choice of parameters. The new PDE-Foam shows improved classification capability for small training samples and reduced classification time compared to the original PDE method based on range searching.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment - Volume 606, Issue 3, 21 July 2009, Pages 717-727
Journal: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment - Volume 606, Issue 3, 21 July 2009, Pages 717-727
نویسندگان
Dominik Dannheim, Alexander Voigt, Karl-Johan Grahn, Peter Speckmayer, Tancredi Carli,