کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10728163 | 1037892 | 2005 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Variable-stepsize Runge-Kutta methods for stochastic Schrödinger equations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک و نجوم (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Stochastic wave equations of Schrödinger type are widely employed in physics and have numerous potential applications in chemistry. While some accurate numerical methods exist for particular classes of stochastic differential equations they cannot generally be used for Schrödinger equations. Efficient and accurate methods for their numerical solution therefore need to be developed. Here we show that existing Runge-Kutta methods for ordinary differential equations (odes) can be modified to solve stochastic wave equations provided that appropriate changes are made to the way stepsizes are selected. The order of the resulting stochastic differential equation (sde) scheme is half the order of the ode scheme. Specifically, we show that an explicit 9th order Runge-Kutta method (with an embedded 8th order method) for odes yields an order 4.5 method for sdes which can be implemented with variable stepsizes. This method is tested by solving systems of equations originating from master equations and from the many-body Schrödinger equation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physics Letters A - Volume 337, Issue 3, 4 April 2005, Pages 166-182
Journal: Physics Letters A - Volume 337, Issue 3, 4 April 2005, Pages 166-182
نویسندگان
Joshua Wilkie, Murat ÃetinbaÅ,