کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10732752 | 1043701 | 2015 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Complexity testing techniques for time series data: A comprehensive literature review
ترجمه فارسی عنوان
تکنیک های تست پیچیدگی برای داده های سری زمانی: بررسی ادبی جامع
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تست پیچیدگی، داده های سری زمانی، بررسی ادبیات، فراکتالیستی، آشوب، آنتروپی،
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک آماری و غیرخطی
چکیده انگلیسی
Complexity may be one of the most important measurements for analysing time series data; it covers or is at least closely related to different data characteristics within nonlinear system theory. This paper provides a comprehensive literature review examining the complexity testing techniques for time series data. According to different features, the complexity measurements for time series data can be divided into three primary groups, i.e., fractality (mono- or multi-fractality) for self-similarity (or system memorability or long-term persistence), methods derived from nonlinear dynamics (via attractor invariants or diagram descriptions) for attractor properties in phase-space, and entropy (structural or dynamical entropy) for the disorder state of a nonlinear system. These estimations analyse time series dynamics from different perspectives but are closely related to or even dependent on each other at the same time. In particular, a weaker self-similarity, a more complex structure of attractor, and a higher-level disorder state of a system consistently indicate that the observed time series data are at a higher level of complexity. Accordingly, this paper presents a historical tour of the important measures and works for each group, as well as ground-breaking and recent applications and future research directions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 81, Part A, December 2015, Pages 117-135
Journal: Chaos, Solitons & Fractals - Volume 81, Part A, December 2015, Pages 117-135
نویسندگان
Ling Tang, Huiling Lv, Fengmei Yang, Lean Yu,