کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10733116 | 1043847 | 2005 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Strange distributionally chaotic triangular maps
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The notion of distributional chaos was introduced by Schweizer, SmÃtal [Measures of chaos and a spectral decompostion of dynamical systems on the interval. Trans. Amer. Math. Soc. 344;1994:737-854] for continuous maps of the interval. For continuous maps of a compact metric space three mutually nonequivalent versions of distributional chaos, DC1-DC3, can be considered. In this paper we study distributional chaos in the class Tm of triangular maps of the square which are monotone on the fibres; such maps must have zero topological entropy. The main results: (i) There is an FâTm such that FâDC2 and Fâ£Rec(F) â DC3. (ii) If no Ï-limit set of an FâTm contains two minimal subsets then FâDC1. This completes recent results obtained by Forti et al. [Dynamics of homeomorphisms on minimal sets generated by triangular mappings. Bull Austral Math Soc 59;1999:1-20], SmÃtal, Å tefánková [Distributional chaos for triangular maps, Chaos, Solitons & Fractals 21;2004:1125-8], and Balibrea et al. [The three versions of distributional chaos. Chaos, Solitons & Fractals 23;2005:1581-3]. The paper contributes to the solution of a long-standing open problem by Sharkovsky concerning classification of triangular maps.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 26, Issue 2, October 2005, Pages 581-589
Journal: Chaos, Solitons & Fractals - Volume 26, Issue 2, October 2005, Pages 581-589
نویسندگان
L. Paganoni, J. SmÃtal,