کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10734233 1043999 2005 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Vector shock soliton and the Hirota bilinear method
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله
Vector shock soliton and the Hirota bilinear method
چکیده انگلیسی
The Hirota bilinear method is applied to find an exact shock soliton solution of the system reaction-diffusion equations for n-component vector order parameter, with the reaction part in form of the third order polynomial, determined by three distinct constant vectors. The bilinear representation is derived by extracting one of the vector roots (unstable in general), which allows us reduce the cubic nonlinearity to a quadratic one. The vector shock soliton solution, implementing transition between other two roots, as a fixed points of the potential from continuum set of the values, is constructed in a simple way. In our approach, the velocity of soliton is fixed by truncating the Hirota perturbation expansion and it is found in terms of all three roots. Shock solitons for extensions of the model, by including the second order time derivative term and the nonlinear transport term are derived. Numerical solutions illustrating generation of solitary wave from initial step function, depending of the polynomial roots are given.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 26, Issue 1, October 2005, Pages 95-105
نویسندگان
, ,