کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10735301 | 1044481 | 2005 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A general framework for global asymptotic stability analysis of delayed neural networks based on LMI approach
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, global asymptotic stability is discussed for neural networks with time-varying delay. Several new criteria in matrix inequality form are given to ascertain the uniqueness and global asymptotic stability of equilibrium point for neural networks with time-varying delay based on Lyapunov method and Linear Matrix Inequality (LMI) technique. The proposed LMI approach has the advantage of considering the difference of neuronal excitatory and inhibitory efforts, which is also computationally efficient as it can be solved numerically using recently developed interior-point algorithm. In addition, the proposed results generalize and improve previous works. The obtained criteria also combine two existing conditions into one generalized condition in matrix form. An illustrative example is also given to demonstrate the effectiveness of the proposed results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 24, Issue 5, June 2005, Pages 1317-1329
Journal: Chaos, Solitons & Fractals - Volume 24, Issue 5, June 2005, Pages 1317-1329
نویسندگان
Jinde Cao, Daniel W.C. Ho,