کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10735321 1044486 2005 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Local bifurcations and codimension-3 degenerate bifurcations of a quintic nonlinear beam under parametric excitation
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله
Local bifurcations and codimension-3 degenerate bifurcations of a quintic nonlinear beam under parametric excitation
چکیده انگلیسی
This paper presents the analysis of the local and codimension-3 degenerate bifurcations in a simply supported flexible beam with quintic nonlinear terms subjected to a harmonic axial excitation for the first time. The quintic nonlinear equation of motion with parametric excitation is derived using the Hamilton's principle. The parametrically excited system is transformed to the averaged equations using the method of multiple scales. Numerical method is used to compute the bifurcation response curves based on the averaged equations. The investigations are made on the effects of quintic nonlinear terms and parametric excitation on the local bifurcations. The stability of trivial solution is analyzed. With the aid of normal form theory, the explicit expressions are obtained for normal form associated with a double zero eigenvalues and Z2-symmetry of the averaged equations. Based on normal form, the analysis of codimension-3 degenerate bifurcations is performed for a simply supported quintic nonlinear beam with the focus on homoclinic and heteroclinic bifurcations. It is found from the analysis of homoclinic and heteroclinic bifurcations that multiple limit cycles may simultaneously exist for quintic nonlinearity. In particular, the number of limit cycles can be precisely determined analytically. New jumping phenomena are discovered in amplitude modulated oscillations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 24, Issue 4, May 2005, Pages 977-998
نویسندگان
, , ,