کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10735331 | 1044486 | 2005 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Uniformly constructing finite-band solutions for a family of derivative nonlinear Schrödinger equations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Based a spectral problem with an arbitrary parameter and Lenard operator pairs, we derive a generalized Kaup-Newell type hierarchy of nonlinear evolution equations, which is explicitly related to many important equations such as the Kundu equation, the Kaup-Newell (KN) equation, the Chen-Lee-Liu (CLL) equation, the Gerdjikov-Ivanov (GI) equation, the Burgers equation, the MKdV equation and the Sharma-Tasso-Olver equation. Furthermore, the separation of variables for x- and tm-constrained flows of the the generalized Kaup-Newell hierarchy is shown. Especially the Kundu, KN, CLL and GI equations are uniformly decomposed into systems of solvable ordinary differential equations. A hyperelliptic Riemann surface and Abel-Jacobi coordinates are introduced to straighten the associated flow, from which the algebro-geometric solutions of these equations are explicitly constructed in terms of the Riemann theta functions by standard Jacobi inversion technique.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 24, Issue 4, May 2005, Pages 1087-1096
Journal: Chaos, Solitons & Fractals - Volume 24, Issue 4, May 2005, Pages 1087-1096
نویسندگان
Y.C. Hon, Engui Fan,