کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10760 702 2006 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
PEO–PPO–PEO-based poly(ether ester urethane)s as degradable reverse thermo-responsive multiblock copolymers
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
PEO–PPO–PEO-based poly(ether ester urethane)s as degradable reverse thermo-responsive multiblock copolymers
چکیده انگلیسی

Aiming at developing biodegradable thermo-responsive polymers that display enhanced rheological properties, a family of PEO–PPO–PEO based poly(ether ester urethane)s, was developed. The materials were produced following a two-step synthetic pathway. The PEO–PPO–PEO triblocks were first end-capped with LA or CL oligo(ester)s whereby pentablocks were produced. Then, the different precursors were chain extended using hexamethylene diisocyanate to create the respective polymers. The length and type of the ester block influenced the behavior of the molecules in water, especially their viscosity versus temperature response. The gelation temperature increased from 23 °C for a 20 wt% F127 solution to 26 and 31 °C for pentablocks with 4.4 and 7.5 lactoyl units, respectively. Materials containing longer LA units failed to show any reverse thermo-responsiveness. The presence of the oligo(ester) blocks also reduced the viscosity of the gel at 37 °C. While F127 displayed a viscosity of around 28,000 Pa s, pentablocks containing 4.4 and 7.5 LA units showed values of 15,400 and 12,600 Pa s. Also, the viscosity at 37 °C as well as the gelation temperature decreased as the molecular weight of the oligo(ester)s increased.Finally, the degradation process of the gels was studied by monitoring their viscosity at body temperature and determining the molecular weight of the polymers, over time. Polymers were tailored so to combine high initial viscosity values with diverse degradation rates, as a function of the length and type of the oligo(ester) present along the polymeric backbone.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomaterials - Volume 27, Issue 9, March 2006, Pages 1718–1727
نویسندگان
, , , , ,