کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
11001562 | 875945 | 2019 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The matching pursuit algorithm revisited: A variant for big data and new stopping rules
ترجمه فارسی عنوان
الگوریتم پیگیری تطبیق مجدد: یک نوع برای داده های بزرگ و قوانین جدید توقف
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
الگوریتم پیگیری الگوریتم، ماتریس کلاه، اطلاعات بزرگ، معیارهای نظری اطلاعات، اطلاعات آلودگی هوا،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
The matching pursuit algorithm (MPA) is used in many applications for selecting the best predictors for a vector of measurements of size n from a dictionary that contains pn atoms, where usually nâ¯â¤â¯pn. A major unsolved problem is to determine the optimal stopping rule. In this work, we investigate various stopping rules which are modifications of the information theoretic (IT) criteria derived for Gaussian linear regression. Because all of them involve the degrees of freedom (df) given by the trace of the hat matrix, we provide some theoretical results concerning this matrix. We also propose novel stopping rules. An important contribution of this paper is a method for computing the df efficiently when big data (nâ¯â«â¯pn) are processed. The significance of the auxiliary variables appearing in MPA for big data is clarified via a theoretical analysis. The superiority of the new stopping rules in comparison with the traditional approaches is demonstrated in simulations involving big data (nâ¯â«â¯pn) or overcomplete dictionaries (nâ¯<â¯pn) and in experiments with air pollution data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 155, February 2019, Pages 170-181
Journal: Signal Processing - Volume 155, February 2019, Pages 170-181
نویسندگان
Fangyao Li, Christopher M. Triggs, Bogdan Dumitrescu, Ciprian Doru GiurcÄneanu,