کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
11001643 | 1001561 | 2018 | 32 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Characterisation of precipitation and carbide coarsening in low carbon low alloy Q&T steels during the early stages of tempering
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی مواد
دانش مواد (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In order to ensure that appropriate tempering conditions are used to obtain desired strength and toughness for low carbon low alloy quench and tempered (Q&T) steel plates in a range of thickness, it is desirable to be able to predict the effect of composition and tempering conditions (time and temperature) on the microstructure and hence the hardness evolution for these steels. In this paper, carbide precipitation and coarsening behaviour in three low carbon low alloy Q&T steels have been investigated during tempering at 600â¯Â°C up to 16â¯h to determine the role of alloying additions of Mo, V, Cr and Si. It has been found that auto-tempering occurs during water quenching with ε'-carbide and cementite being present within the martensite laths for all three steels. In the Base steel, cementite becomes the stable second phase after 2â¯h tempering and has an elliptical (sometimes spherical) shape, which coarsens with time during tempering from 2â¯h to 16â¯h. However, in the Base-Mo-V and Base-Cr-Mo-V-Si steels, elliptical and needle-shaped cementite (shown to contain Mn, Mo and Cr) both exist during tempering; furthermore, finer elliptical secondary Mo-V-rich carbides are observed after tempering for 4â¯h. The coarsening of cementite contributing to the softening process in the three steels has been quantified with, most significantly, the inter- and intra-lath carbides coarsening independently. Although fine secondary alloy carbides are observed after 4â¯h tempering, they do not result in any noticeable secondary hardening peak in the Base-Mo-V and Base-Cr-Mo-V-Si steels.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Materials Science and Engineering: A - Volume 738, 19 December 2018, Pages 174-189
Journal: Materials Science and Engineering: A - Volume 738, 19 December 2018, Pages 174-189
نویسندگان
Yulin Ju, Aimee Goodall, Martin Strangwood, Claire Davis,