کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
11002304 1437591 2019 38 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Scent classification by K nearest neighbors using ion-mobility spectrometry measurements
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Scent classification by K nearest neighbors using ion-mobility spectrometry measurements
چکیده انگلیسی
Various classifiers for scent classification based on measurements using an electronic nose (eNose) have been studied recently. In general, classifiers rely on a static database containing reference eNose measurements for known scents. However, most of these approaches require retraining of the classifier every time a new scent needs to be added to the training database. In this paper, the potential of a K nearest neighbors (KNN) classifier is investigated to avoid the time-consuming retraining when updating the database. To speed up classification, a k-dimensional tree search in the KNN classifier and principal component analysis (PCA) are studied. The tests with scents presented to an eNose based on ion-mobility spectrometry (IMS) show that the KNN method classifies scents with high accuracy. Using a k-dimensional tree search instead of an exhaustive search has no significant influence on the misclassification rate but reduces the classification time considerably. The use of PCA-transformed data results in a higher misclassification rate than the use of IMS data when only the first principal components explaining 95% of the total variance are used but in a similar misclassification rate when the first principal components explaining 99% of the total variance are used. In conclusion, the proposed method can be recommended for classifying scents measured with IMS-based eNoses.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 115, January 2019, Pages 593-606
نویسندگان
, , , , , , , , , , , ,