| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 11002866 | 1449962 | 2019 | 39 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Data-free metrics for Dirichlet and generalized Dirichlet mixture-based HMMs - A practical study
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													 چشم انداز کامپیوتر و تشخیص الگو
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												Approaches to design metrics between hidden Markov models (HMM) can be divided into two classes: data-based and parameter-based. The latter has the clear advantage of being deterministic and faster but only a very few similarity measures that can be applied to mixture-based HMMs have been proposed so far. Most of these metrics apply to the discrete or Gaussian HMMs and no comparative study have been led to the best of our knowledge. With the recent development of HMMs based on the Dirichlet and generalized Dirichlet distributions for proportional data modeling, we propose to design three new parametric similarity measures between these HMMs. Extensive experiments on synthetic data show the reliability of these new measures where the existing ones fail at giving expected results when some parameters vary. Illustration on real data show the clustering capability of these measures and their potential applications.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 85, January 2019, Pages 207-219
											Journal: Pattern Recognition - Volume 85, January 2019, Pages 207-219
نویسندگان
												Elise Epaillard, Nizar Bouguila,