کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
11002866 1449962 2019 39 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Data-free metrics for Dirichlet and generalized Dirichlet mixture-based HMMs - A practical study
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Data-free metrics for Dirichlet and generalized Dirichlet mixture-based HMMs - A practical study
چکیده انگلیسی
Approaches to design metrics between hidden Markov models (HMM) can be divided into two classes: data-based and parameter-based. The latter has the clear advantage of being deterministic and faster but only a very few similarity measures that can be applied to mixture-based HMMs have been proposed so far. Most of these metrics apply to the discrete or Gaussian HMMs and no comparative study have been led to the best of our knowledge. With the recent development of HMMs based on the Dirichlet and generalized Dirichlet distributions for proportional data modeling, we propose to design three new parametric similarity measures between these HMMs. Extensive experiments on synthetic data show the reliability of these new measures where the existing ones fail at giving expected results when some parameters vary. Illustration on real data show the clustering capability of these measures and their potential applications.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 85, January 2019, Pages 207-219
نویسندگان
, ,