کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
11012393 1800229 2018 28 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A new deep convolutional neural network for fast hyperspectral image classification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر سیستم های اطلاعاتی
پیش نمایش صفحه اول مقاله
A new deep convolutional neural network for fast hyperspectral image classification
چکیده انگلیسی
Artificial neural networks (ANNs) have been widely used for the analysis of remotely sensed imagery. In particular, convolutional neural networks (CNNs) are gaining more and more attention in this field. CNNs have proved to be very effective in areas such as image recognition and classification, especially for the classification of large sets composed by two-dimensional images. However, their application to multispectral and hyperspectral images faces some challenges, especially related to the processing of the high-dimensional information contained in multidimensional data cubes. This results in a significant increase in computation time. In this paper, we present a new CNN architecture for the classification of hyperspectral images. The proposed CNN is a 3-D network that uses both spectral and spatial information. It also implements a border mirroring strategy to effectively process border areas in the image, and has been efficiently implemented using graphics processing units (GPUs). Our experimental results indicate that the proposed network performs accurately and efficiently, achieving a reduction of the computation time and increasing the accuracy in the classification of hyperspectral images when compared to other traditional ANN techniques.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISPRS Journal of Photogrammetry and Remote Sensing - Volume 145, Part A, November 2018, Pages 120-147
نویسندگان
, , , ,