کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
11016433 | 1777112 | 2018 | 4 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Investigation of artificial neural network algorithm based IGBT online condition monitoring
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
سخت افزارها و معماری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Reliability of Insulated Gate Bipolar Transistor (IGBT) has drawn much attention in recent years. Online monitoring of IGBT is an effective mehod to improve IGBT operation reliability. State-of-the-art online monitoring methods for IGBT are based on thermal sensitive electrical parameters (TSEPs) extraction, but the TSEPs can be hardly obtained with required accuracy in practical application. This paper investigates Artificial Neural Network (ANN) based IGBT online monitoring method. DC link voltage and H-bridge output voltage, which are practical measurable parameters, are selected as the input of ANN. Both single input single output (SISO) and multiple input single output (MISO) neural networks are analysed and discussed. With the proposed method, the relationship of the practical measurable parameters and investigated TSEP, on-resistance of IGBT, can be established. By applying the existing criterion of TSEPs for the IGBT reliability, the prediction of the IGBT failure can be achieved. Simulations verify that the errors brought by the established model are within precision requirements.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Microelectronics Reliability - Volumes 88â90, September 2018, Pages 103-106
Journal: Microelectronics Reliability - Volumes 88â90, September 2018, Pages 103-106
نویسندگان
Xiaoman Sun, Meng Huang, Yi Liu, Xiaoming Zha,