کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
11017737 | 1721165 | 2018 | 38 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Modeling reproduction of whitetail deer and its applications
ترجمه فارسی عنوان
مدل سازی بازتولید گوزن سفید گوزن و کاربرد آن
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم کشاورزی و بیولوژیک
علوم کشاورزی و بیولوژیک (عمومی)
چکیده انگلیسی
Many environmental factors, such as annual precipitation, temperature variations, and the embedded stochasticity of natural systems, affect resource availability from one region to the next, such that animal survival and reproduction rates differ by region. For species exhibiting phenotypic plasticity, embedding phenotypes in a model of population dynamics becomes important, as region-driven plastic responses play a significant role when estimating parameters values. In this paper, we discuss how to include observable characteristics and climate patterns in estimates of reproduction rates of whitetail deer (Odocoileus virginianus). Using many studies already available in the literature, we establish a strong correlation between reproduction rate and both body weight and USDA plant hardiness zone. We demonstrate the accuracy of the estimated whitetail deer fecundity rates for various geographical regions in North America and show that Bergmann's rule is necessary to maintain similar biological fitness between various spatial distributions of deer populations. We demonstrate that the standard deviation of the weight distribution has almost no effect on reproduction rate estimates for adult deer populations. However, statistical analysis reveals sensitivity of fawn reproduction rates to environmental stochasticity. We incorporate the reproduction function in a stage- and gender-based model and prove the existence of a stable solution. Finally, we demonstrate a possible application of the model using harvested deer weights, without collecting reproduction data directly.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Theoretical Biology - Volume 459, 14 December 2018, Pages 90-102
Journal: Journal of Theoretical Biology - Volume 459, 14 December 2018, Pages 90-102
نویسندگان
Dinesh B. Ekanayake, Amy J. Ekanayake, Jason Hunt, Catherine L. Miller-Hunt,