کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
11020322 | 1717552 | 2019 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A class of general adjusted maximum likelihood methods for desirable mean squared error estimation of EBLUP under the Fay-Herriot small area model
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we therefore seek an adequate class of general adjusted maximum-likelihood methods that simultaneously achieve the three desired properties of MSE estimation. To establish that the investigated class does so, we reveal the relationship between the general adjusted maximum-likelihood method for the model variance parameter and the general functional form of the second-order unbiased MSE estimator, maintaining strict positivity. We also compare the performance of several MSE estimators in our investigated class and others through a Monte Carlo simulation study. The results show that the MSE estimators in our investigated class perform better than those in others.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 199, March 2019, Pages 302-310
Journal: Journal of Statistical Planning and Inference - Volume 199, March 2019, Pages 302-310
نویسندگان
Masayo Y. Hirose,