کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
11021160 | 1715033 | 2018 | 29 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Spectral clustering based on iterative optimization for large-scale and high-dimensional data
ترجمه فارسی عنوان
خوشه طیفی بر اساس بهینه سازی تکراری برای داده های بزرگ و با ابعاد بزرگ
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
یادگیری منیفولد، خوشه طیفی، یادگیری چند کاره
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Spectral graph theoretic methods have been a fundamental and important topic in the field of manifold learning and it has become a vital tool in data clustering. However, spectral clustering approaches are limited by their computational demands. It would be too expensive to provide an optimal approximation for spectral decomposition in dealing with large-scale and high-dimensional data sets. On the other hand, the rapid development of data on the Web has posed many rising challenges to the traditional single-task clustering, while the multi-task clustering provides many new thoughts for real-world applications such as video segmentation. In this paper, we will study a Spectral Clustering based on Iterative Optimization (SCIO), which solves the spectral decomposition problem of large-scale and high-dimensional data sets and it well performs on multi-task clustering. Extensive experiments on various synthetic data sets and real-world data sets demonstrate that the proposed method provides an efficient solution for spectral clustering.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 318, 27 November 2018, Pages 227-235
Journal: Neurocomputing - Volume 318, 27 November 2018, Pages 227-235
نویسندگان
Yang Zhao, Yuan Yuan, Feiping Nie, Qi Wang,